The search session has expired. Please query the service again.
Displaying 41 –
60 of
120
Dispersion of measurement results is an important parameter that enables us not only to characterize not only accuracy of measurement but enables us also to construct confidence regions and to test statistical hypotheses. In nonlinear regression model the estimator of dispersion is influenced by a curvature of the manifold of the mean value of the observation vector. The aim of the paper is to find the way how to determine a tolerable level of this curvature.
We consider a failure hazard function,
conditional on a time-independent covariate Z,
given by . The baseline hazard
function and the relative risk both belong to parametric
families with
. The covariate Z has an unknown density and is measured with an error through an
additive error model U = Z + ε where ε is a random variable, independent from Z, with
known density .
We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is
the minimum between the failure time and the censoring time,
and...
Numerical evaluation of the optimal nonlinear robust control requires estimating the impact of parameter uncertainties on the system output. The main goal of the paper is to propose a method for estimating the norm of an output trajectory deviation from the nominal trajectory for nonlinear uncertain, discrete-time systems. The measure of the deviation allows us to evaluate the robustness of any designed controller. The first part of the paper concerns uncertainty modelling for nonlinear systems...
Two general solutions of the collocation problem of physical geodesy are given. Their mutual equivalency and equivalency of them to the classical solution in the regular case are proved. The regularity means the non-singularity of the covariance matrix of those random variables by outcomes of which the measured values of the gravitational field are generated.
Radial basis function (RBF) networks represent established tools for nonlinear regression modeling with numerous applications in various fields. Because their standard training is vulnerable with respect to the presence of outliers in the data, several robust methods for RBF network training have been proposed recently. This paper is interested in robust regularized RBF networks. A robust inter-quantile version of RBF networks based on trimmed least squares is proposed here. Then, a systematic comparison...
If a nonlinear regression model is linearized in a non-sufficient small neighbourhood of the actual parameter, then all statistical inferences may be deteriorated. Some criteria how to recognize this are already developed. The aim of the paper is to demonstrate the behaviour of the program for utilization of these criteria.
The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected - asymptotically - arbitrarily small. Then also -consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels...
Results of a numerical study of the behavior of the instrumental weighted variables estimator – in a competition with two other estimators – are presented. The study was performed under various frameworks (homoscedsticity/heteroscedasticity, several level and types of contamination of data, fulfilled/broken orthogonality condition). At the beginning the optimal values of eligible parameters of estimatros in question were empirically established. It was done under the various sizes of data sets and...
We study functional regression with random subgaussian design and real-valued response. The focus is on the problems in which the regression function can be well approximated by a functional linear model with the slope function being “sparse” in the sense that it can be represented as a sum of a small number of well separated “spikes”. This can be viewed as an extension of now classical sparse estimation problems to the case of infinite dictionaries. We study an estimator of the regression function...
The semi-group associated with the Cauchy problem for a scalar conservation law is known to be a contraction in . However it is not a contraction in for any . Leger showed in [20] that for a convex flux, it is however a contraction in up to a suitable shift. We investigate in this paper whether such a contraction may happen for systems. The method is based on the relative entropy method. Our general analysis leads us to the new geometrical notion of Genuinely non-Temple systems. We treat in...
In nonlinear regression models an approximate value of an unknown parameter is frequently at our disposal. Then the linearization of the model is used and a linear estimate of the parameter can be calculated. Some criteria how to recognize whether a linearization is possible are developed. In the case that they are not satisfied, it is necessary to take into account either some quadratic corrections or to use the nonlinear least squares method. The aim of the paper is to find some criteria for an...
In the case of the nonlinear regression model, methods and procedures have been developed to obtain estimates of the parameters. These methods are much more complicated than the procedures used if the model considered is linear. Moreover, unlike the linear case, the properties of the resulting estimators are unknown and usually depend on the true values of the estimated parameters. It is sometimes possible to approximate the nonlinear model by a linear one and use the much more developed linear...
A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.
If an observation vector in a nonlinear regression model is normally distributed, then an algorithm for a determination of the exact -confidence region for the parameter of the mean value of the observation vector is well known. However its numerical realization is tedious and therefore it is of some interest to find some condition which enables us to construct this region in a simpler way.
Currently displaying 41 –
60 of
120