Loading [MathJax]/extensions/MathZoom.js
In this work a family of stochastic differential equations whose solutions are multidimensional diffusion-type (non necessarily markovian) processes is considered, and the estimation of a parametric vector θ which relates the coefficients is studied. The conditions for the existence of the likelihood function are proved and the estimator is obtained by continuously observing the process. An application for Diffusion Branching Processes is given. This problem has been studied in some special cases...
In the general geometric asset price model, the asset price P(t) at time t satisfies the relation , t ∈ [0,T], where f is a deterministic trend function, the stochastic process F describes the random fluctuations of the market, α is the trend coefficient, and σ denotes the volatility. The paper examines the problem of optimal trend estimation by utilizing the concept of kernel reproducing Hilbert spaces. It characterizes the class of trend functions with the property that the trend coefficient...
Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed.
This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants.
A tuned...
Periodic moving average processes are representatives of the class of periodic models suitable for the description of some seasonal time series and for the construction of multivariate moving average models. The attention having been lately concentrated mainly on periodic autoregressions, some methods of statistical analysis of the periodic moving average processes are suggested in the paper. These methods include the estimation procedure (based on Durbin's construction of the parameter estimators...
We study estimation problems for periodically correlated, non gaussian processes. We estimate the correlation functions and the spectral densities from continuous-time samples. From a random time sample, we construct three types of estimators for the spectral densities and we prove their consistency.
This work deals with Random Coefficient Autoregressive models where the error process is a martingale difference sequence. A class of estimators of unknown parameter is employed. This class was originally proposed by Schick and it covers both least squares estimator and maximum likelihood estimator for instance. Asymptotic behavior of such estimators is explored, especially the rate of convergence to normal distribution is established.
In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition...
This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process,...
This paper considers the properties of a minimum variance self-tuning tracker for MIMO systems described by ARMAX models. It is assumed that the stochastic noise has a non-Gaussian distribution. Such an assumption introduces into a recursive algorithm a nonlinear transformation of the prediction error. The system under consideration is minimum phase with different dimensions for input and output vectors. In the paper the concept of Kronecker's product is used, which allows us to represent unknown...
Currently displaying 61 –
80 of
96