Displaying 301 – 320 of 758

Showing per page

Some iterative Poisson solvers applied to numerical solution of the model fourth-order elliptic problem

Marián Vajteršic (1985)

Aplikace matematiky

The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector....

Some mixed finite element methods on anisotropic meshes

Mohamed Farhloul, Serge Nicaise, Luc Paquet (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...

Some mixed finite element methods on anisotropic meshes

Mohamed Farhloul, Serge Nicaise, Luc Paquet (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with some mixed finite element methods on a class of anisotropic meshes based on tetrahedra and prismatic (pentahedral) elements. Anisotropic local interpolation error estimates are derived in some anisotropic weighted Sobolev spaces. As particular applications, the numerical approximation by mixed methods of the Laplace equation in domains with edges is investigated where anisotropic finite element meshes are appropriate. Optimal error estimates are obtained using some anisotropic...

Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method

Abdallah Bradji, Jürgen Fuhrmann (2014)

Mathematica Bohemica

We consider a family of conforming finite element schemes with piecewise polynomial space of degree k in space for solving the wave equation, as a model for second order hyperbolic equations. The discretization in time is performed using the Newmark method. A new a priori estimate is proved. Thanks to this new a priori estimate, it is proved that the convergence order of the error is h k + τ 2 in the discrete norms of ( 0 , T ; 1 ( Ω ) ) and 𝒲 1 , ( 0 , T ; 2 ( Ω ) ) , where h and τ are the mesh size of the spatial and temporal discretization, respectively....

Currently displaying 301 – 320 of 758