Some comparisons of difference schemes on meshes of Shishkin and Bakhvalov type.
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads...
Two new applications of -representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane . 2. Employing -representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.
Let be some vector sequence, converging to S, satisfying , where are constant vectors independent of n. The purpose of this paper is to provide acceleration methods for these vector sequences. Comparisons are made with some known algorithms. Numerical examples are also given.
Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...
Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam...
The author proves the existence of the multi-parameter asymptotic error expansion to the five-point difference scheme for Dirichlet problems for the linear and semilinear elliptic PDE on general domains. By Richardson extrapolation, this expansion leads to a simple process for accelerating the convergence of the method.
The author proves the existence of the multi-parameter asymptotic error expansion to the usual five-point difference scheme for Dirichlet problems for the linear and semilinear elliptic PDE on the so-called uniform and nearly uniform domains. This expansion leads, by Richardson extrapolation, to a simple process for accelerating the convergence of the method. A numerical example is given.
The author proves the existence of the asymptotic error expansion to the Peaceman-Rachford finite-difference scheme for the first boundary value problem of the two-dimensional evolationary equation on the so-called uniform and nearly uniform domains. This expansion leads, by Richardson extrapolation, to a simple process for accelerating the convergence of the method. A numerical example is given.
Kellogg's iterations in the eigenvalue problem are discussed with respect to the boundary spectrum of a linear normal operator.