Semidiscrete central difference method in time for determining surface temperatures.
A semilinear parabolic equation in a Banach space is considered. The purpose of this paper is to show the dependence of an error estimate for Rothe's method on the regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral representation.
We extend results on constructing semiorthogonal linear spline prewavelet systems in one and two dimensions to the case of irregular dyadic refinement. In the one-dimensional case, we obtain sharp two-sided inequalities for the -condition, 1 < p < ∞, of such systems.
In this paper, under the maximum angle condition, the finite element method is analyzed for nonlinear elliptic variational problem formulated in [4]. In [4] the analysis was done under the minimum angle condition.
Tetrahedral finite -elements of the Hermite type satisfying the maximum angle condition are presented and the corresponding finite element interpolation theorems in the maximum norm are proved.
Semi-smooth Newton methods are analyzed for the Signorini problem. A proper regularization is introduced which guarantees that the semi-smooth Newton method is superlinearly convergent for each regularized problem. Utilizing a shift motivated by an augmented Lagrangian framework, to the regularization term, the solution to each regularized problem is feasible. Convergence of the regularized problems is shown and a report on numerical experiments is given.
Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an estimate for the penalized...
Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an L∞ estimate for the penalized...
The singular mixed linear model with constraints is investigated with respect to an influence of inaccurate variance components on a decrease of the confidence level. The algorithm for a determination of the boundary of the insensitivity region is given. It is a set of all shifts of variance components values which make the tolerated decrease of the confidence level only. The problem about geometrical characterization of the confidence domain is also presented.
The influence of emission levels on the concentrations of four important air pollutants (ammonia, ozone, ammonium sulphate and ammonium nitrate) over three European cities (Milan, Manchester, and Edinburgh) with different geographical locations is considered. Sensitivity analysis of the output of the Unified Danish Eulerian Model according to emission levels is provided. The Sobol’ variance-based approach for global sensitivity analysis has been applied to compute the corresponding sensitivity measures....
MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35We introduce sparse linear underdetermined systems with embedded network structure. Their structure is inherited from the non-homogeneous network ow programming problems with nodes of variable intensities. One of the new applications of the researched underdetermined systems is the sensor location problem (SLP) for a multigraph. That is the location of the minimum number of sensors in the nodes of the multigraph, in order to determine the arcs ow...