Finding nonoverlapping substructures of a sparse matrix.
In a foregoing paper [Sonar, ESAIM: M2AN39 (2005) 883–908] we analyzed the Interpolating Moving Least Squares (IMLS) method due to Lancaster and Šalkauskas with respect to its approximation powers and derived finite difference expressions for the derivatives. In this sequel we follow a completely different approach to the IMLS method given by Kunle [Dissertation (2001)]. As a typical problem with IMLS method we address the question of getting admissible results at the boundary by introducing “ghost...
In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...