On a finite difference analogue of a singular boundary value problem.
We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...
We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...
The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.