Displaying 121 – 140 of 279

Showing per page

Piecewise-polynomial signal segmentation using convex optimization

Pavel Rajmic, Michaela Novosadová, Marie Daňková (2017)

Kybernetika

A method is presented for segmenting one-dimensional signal whose independent segments are modeled as polynomials, and which is corrupted by additive noise. The method is based on sparse modeling, the main part is formulated as a convex optimization problem and is solved by a proximal splitting algorithm. We perform experiments on simulated and real data and show that the method is capable of reliably finding breakpoints in the signal, but requires careful tuning of the regularization parameters...

Pivoting algorithm in class of ABS methods

Gabriela Kálnová (1996)

Archivum Mathematicum

Summary: The paper deals with a pivoting modification of the algorithm in the class of ABS methods. Numerical experiments compare this pivoting modification with the fundamental version. A hybrid algorithm for the solution of the linear system with the Hankel matrix is introduced.

Plane wave discontinuous Galerkin methods: Analysis of the h-version

Claude J. Gittelson, Ralf Hiptmair, Ilaria Perugia (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane waves have been proposed. We focus on a class of Trefftz-type discontinuous Galerkin methods that ...

Plane wave stability of some conservative schemes for the cubic Schrödinger equation

Morten Dahlby, Brynjulf Owren (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

The plane wave stability properties of the conservative schemes of Besse [SIAM J. Numer. Anal.42 (2004) 934–952] and Fei et al. [Appl. Math. Comput.71 (1995) 165–177] for the cubic Schrödinger equation are analysed. Although the two methods possess many of the same conservation properties, we show that their stability behaviour is very different. An energy preserving generalisation of the Fei method with improved stability is presented.

Point fixe d'une application non contractante.

Pierre Gilles Lemarié-Rieusset (2006)

Revista Matemática Iberoamericana

We study a multilinear fixed-point equation in a closed ball of a Banach space where the application is 1-Lipschitzian: existence, uniqueness, approximations, regularity.

Currently displaying 121 – 140 of 279