Page 1

Displaying 1 – 5 of 5

Showing per page

Bayes sharpening of imprecise information

Piotr Kulczycki, Małgorzata Charytanowicz (2005)

International Journal of Applied Mathematics and Computer Science

A complete algorithm is presented for the sharpening of imprecise information, based on the methodology of kernel estimators and the Bayes decision rule, including conditioning factors. The use of the Bayes rule with a nonsymmetrical loss function enables the inclusion of different results of an under- and overestimation of a sharp value (real number), as well as minimizing potential losses. A conditional approach allows to obtain a more precise result thanks to using information entered as the...

Bayesian and Frequentist Two-Sample Predictions of the Inverse Weibull Model Based on Generalized Order Statistics

Abd Ellah, A. H. (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.This paper is concerned with the problem of deriving Bayesian prediction bounds for the future observations (two-sample prediction) from the inverse Weibull distribution based on generalized order statistics (GOS). Study the two side interval Bayesian prediction, point prediction under symmetric and asymmetric loss functions and the maximum likelihood (ML) prediction using "plug-in" procedure for future observations from the inverse...

Bayesian Prediction of Weibull Distribution Based on Fixed and Random Sample Size

Ellah, A. H. Abd (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 62E16, 65C05, 65C20.We consider the problem of predictive interval for future observations from Weibull distribution. We consider two cases they are: (i) fixed sample size (FSS), (ii) random sample size (RSS). Further, we derive the predictive function for both FSS and RSS in closed forms. Next, the upper and lower 1%, 2.5%, 5% and 10% critical points for the predictive functions are calculated. To show the usefulness of our results, we present some simulation...

Binary segmentation and Bonferroni-type bounds

Michal Černý (2011)

Kybernetika

We introduce the function Z ( x ; ξ , ν ) : = - x ϕ ( t - ξ ) · Φ ( ν t ) d t , where ϕ and Φ are the pdf and cdf of N ( 0 , 1 ) , respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables...

Currently displaying 1 – 5 of 5

Page 1