Displaying 681 – 700 of 744

Showing per page

Theoretical and numerical comparison of some sampling methods for molecular dynamics

Eric Cancès, Frédéric Legoll, Gabriel Stoltz (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of the present article is to compare different phase-space sampling methods, such as purely stochastic methods (Rejection method, Metropolized independence sampler, Importance Sampling), stochastically perturbed Molecular Dynamics methods (Hybrid Monte Carlo, Langevin Dynamics, Biased Random Walk), and purely deterministic methods (Nosé-Hoover chains, Nosé-Poincaré and Recursive Multiple Thermostats (RMT) methods). After recalling some theoretical convergence properties for the...

Time splitting for wave equations in random media

Guillaume Bal, Lenya Ryzhik (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the simplified...

Time splitting for wave equations in random media

Guillaume Bal, Lenya Ryzhik (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the...

Towards effective dynamics in complex systems by Markov kernel approximation

Christof Schütte, Tobias Jahnke (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Many complex systems occurring in various application share the property that the underlying Markov process remains in certain regions of the state space for long times, and that transitions between such metastable sets occur only rarely. Often the dynamics within each metastable set is of minor importance, but the transitions between these sets are crucial for the behavior and the understanding of the system. Since simulations of the original process are usually prohibitively expensive, the effective...

Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation

François Bolley, Arnaud Guillin, Florent Malrieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasserstein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality...

Tumour angiogenesis model with variable vessels' effectiveness

Jan Poleszczuk, Iwona Skrzypczak (2011)

Applicationes Mathematicae

We propose a model of vascular tumour growth, which generalises the well recognised model formulated by Hahnfeldt et al. in 1999. Our model is based on the same idea that the carrying capacity for any solid tumour depends on its vessel density but it also incorporates vasculature quality which may be lost during angiogenesis as recognised by Jain in 2005. In the model we assume that the loss of vessel quality affects the diffusion coefficient inside the tumour. We analyse basic mathematical properties...

Un algoritmo iterativo para la estimación de modelos ARMA con ausencia de observaciones.

José A. Cristóbal Cristóbal (1988)

Trabajos de Estadística

En el presente artículo se muestra un algoritmo iterativo para la estimación de parámetros de modelos ARMA en series temporales que tengan alguna observación ausente. Posteriormente se efectúa la demostración de la convergencia de dicho algoritmo. Se presenta un ejemplo de estimación basado en la simulación de series temporales con un ordenador y se exponen las conclusiones llevadas a cabo por el autor.

Underparametrization of weakly nonlinear regression models

Lubomír Kubáček, Eva Tesaříková (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

A large number of parameters in regression models can be serious obstacle for processing and interpretation of experimental data. One way how to overcome it is an elimination of some parameters. In some cases it need not deteriorate statistical properties of estimators of useful parameters and can help to interpret them. The problem is to find conditions which enable us to decide whether such favourable situation occurs.

Uniformly convergent adaptive methods for a class of parametric operator equations∗

Claude Jeffrey Gittelson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.

Uniformly convergent adaptive methods for a class of parametric operator equations∗

Claude Jeffrey Gittelson (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.

Currently displaying 681 – 700 of 744