Displaying 61 – 80 of 132

Showing per page

A stability analysis for finite volume schemes applied to the Maxwell system

Sophie Depeyre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this paper a stability study concerning finite volume schemes applied to the two-dimensional Maxwell system, using rectangular or triangular meshes. A stability condition is proved for the first-order upwind scheme on a rectangular mesh. Stability comparisons between the Yee scheme and the finite volume formulation are proposed. We also compare the stability domains obtained when considering the Maxwell system and the convection equation.

A stochastic phase-field model determined from molecular dynamics

Erik von Schwerin, Anders Szepessy (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation...

A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems

M. Billaud-Friess, A. Nouy, O. Zahm (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with a measure of the residual corresponding to the error in a specified solution norm. The residual norm can be designed such that the resulting low-rank approximations are optimal with respect to particular norms of interest, thus allowing to take...

A weighted empirical interpolation method: a priori convergence analysis and applications

Peng Chen, Alfio Quarteroni, Gianluigi Rozza (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667–672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis...

Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity constraints

Nicolas Bousquet (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

The problem of estimating the probability p = P ( g ( X ) 0 ) is considered when X represents a multivariate stochastic input of a monotonic function g . First, a heuristic method to bound p , originally proposed by de Rocquigny (2009), is formally described, involving a specialized design of numerical experiments. Then a statistical estimation of p is considered based on a sequential stochastic exploration of the input space. A maximum likelihood estimator of p build from successive dependent Bernoulli data is defined...

Accurate calculations of Stationary Distributions and Mean First Passage Times in Markov Renewal Processes and Markov Chains

Jeffrey J. Hunter (2016)

Special Matrices

This article describes an accurate procedure for computing the mean first passage times of a finite irreducible Markov chain and a Markov renewal process. The method is a refinement to the Kohlas, Zeit fur Oper Res, 30, 197–207, (1986) procedure. The technique is numerically stable in that it doesn’t involve subtractions. Algebraic expressions for the special cases of one, two, three and four states are derived.Aconsequence of the procedure is that the stationary distribution of the embedded Markov...

Adaptive algorithm for stochastic Galerkin method

Ivana Pultarová (2015)

Applications of Mathematics

We introduce a new tool for obtaining efficient a posteriori estimates of errors of approximate solutions of differential equations the data of which depend linearly on random parameters. The solution method is the stochastic Galerkin method. Polynomial chaos expansion of the solution is considered and the approximation spaces are tensor products of univariate polynomials in random variables and of finite element basis functions. We derive a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz...

Adaptive Dantzig density estimation

K. Bertin, E. Le Pennec, V. Rivoirard (2011)

Annales de l'I.H.P. Probabilités et statistiques

The aim of this paper is to build an estimate of an unknown density as a linear combination of functions of a dictionary. Inspired by Candès and Tao’s approach, we propose a minimization of the ℓ1-norm of the coefficients in the linear combination under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictionaries. Under local or global structure assumptions, oracle inequalities are derived. These theoretical results are transposed...

Adaptive density estimation under weak dependence

Irène Gannaz, Olivier Wintenberger (2010)

ESAIM: Probability and Statistics

Assume that (Xt)t∈Z is a real valued time series admitting a common marginal density f with respect to Lebesgue's measure. [Donoho et al. Ann. Stat.24 (1996) 508–539] propose near-minimax estimators f ^ n based on thresholding wavelets to estimate f on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are...

Adaptive hard-thresholding for linear inverse problems

Paul Rochet (2013)

ESAIM: Probability and Statistics

A number of regularization methods for discrete inverse problems consist in considering weighted versions of the usual least square solution. These filter methods are generally restricted to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. However, in several cases, non-monotonic sequences of filters may appear more appropriate. In this paper, we study a hard-thresholding regularization method that extends the spectral cut-off procedure to non-monotonic sequences....

Adaptive tests of homogeneity for a Poisson process

M. Fromont, B. Laurent, P. Reynaud-Bouret (2011)

Annales de l'I.H.P. Probabilités et statistiques

We propose to test the homogeneity of a Poisson process observed on a finite interval. In this framework, we first provide lower bounds for the uniform separation rates in -norm over classical Besov bodies and weak Besov bodies. Surprisingly, the obtained lower bounds over weak Besov bodies coincide with the minimax estimation rates over such classes. Then we construct non-asymptotic and non-parametric testing procedures that are adaptive in the sense that they achieve, up to a possible logarithmic...

Aggregation/disaggregation method for safety models

Štěpán Klapka, Petr Mayer (2002)

Applications of Mathematics

The paper concerns the possibilities for mathematical modelling of safety related systems (equipment oriented on safety). Some mathematical models have been required by the present European Standards for the railway transport. We are interested in the possibility of using Markov’s models to meet these Standards. In the text an example of using that method in the interlocking equipment life cycle is given. An efficient aggregation/disaggregation method for computing some characteristics of Markov...

Currently displaying 61 – 80 of 132