Page 1

Displaying 1 – 11 of 11

Showing per page

Meshless Polyharmonic Div-Curl Reconstruction

M. N. Benbourhim, A. Bouhamidi (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we will discuss the meshless polyharmonic reconstruction of vector fields from scattered data, possibly, contaminated by noise. We give an explicit solution of the problem. After some theoretical framework, we discuss some numerical aspect arising in the problems related to the reconstruction of vector fields

Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition

Hiroki Ishizaka (2024)

Applications of Mathematics

We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between...

Multivariate smooth interpolation that employs polyharmonic functions

Segeth, Karel (2019)

Programs and Algorithms of Numerical Mathematics

We study the problem of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints. We present a procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines complemented with lower order polynomial terms. In general, such formulae can be very useful e.g. in geographic information systems or computer aided geometric design. A simple computational example...

Currently displaying 1 – 11 of 11

Page 1