Page 1 Next

Displaying 1 – 20 of 24

Showing per page

On one approach to local surface smoothing

Nikolay Dikoussar, Csaba Török (2007)

Kybernetika

A bicubic model for local smoothing of surfaces is constructed on the base of pivot points. Such an approach allows reducing the dimension of matrix of normal equations more than twice. The model enables to increase essentially the speed and stability of calculations. The algorithms, constructed by the aid of the offered model, can be used both in applications and the development of global methods for smoothing and approximation of surfaces.

On one method of numerical integration

Josef Matušů, Gejza Dohnal, Martin Matušů (1991)

Applications of Mathematics

The uniform convergence of a sequence of Lienhard approximation of a given continuous function is proved. Further, a method of numerical integration is derived which is based on the Lienhard interpolation method.

On semiregular families of triangulations and linear interpolation

Michal Křížek (1991)

Applications of Mathematics

We consider triangulations formed by triangular elements. For the standard linear interpolation operator π h we prove the interpolation order to be v - π h v 1 , p C h v 2 , p for p > 1 provided the corresponding family of triangulations is only semiregular. In such a case the well-known Zlámal’s condition upon the minimum angle need not be satisfied.

On the computation of the GCD of 2-D polynomials

Panagiotis Tzekis, Nicholas Karampetakis, Haralambos Terzidis (2007)

International Journal of Applied Mathematics and Computer Science

The main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based on DFT techniques. The whole theory is implemented via illustrative examples.

Currently displaying 1 – 20 of 24

Page 1 Next