Recurrent evaluation of integrals of the type , with respect to numerical stability
František Chvála (1975)
Aplikace matematiky
D.C. HANDSCOMB (1964)
Numerische Mathematik
Khattri, Sanjay Kumar (2009)
International Journal of Open Problems in Computer Science and Mathematics. IJOPCM
David M. Gómez, Pablo Dartnell (2012)
Applications of Mathematics
We apply a Markov chain Monte Carlo method to approximate the integral of a continuous function with respect to the asymmetric Bernoulli convolution and, in particular, with respect to a binomial measure. This method---inspired by a cognitive model of memory decay---is extremely easy to implement, because it samples only Bernoulli random variables and combines them in a simple way so as to obtain a sequence of empirical measures converging almost surely to the Bernoulli convolution. We give explicit...
Ujević, N. (2002)
Acta Mathematica Universitatis Comenianae. New Series
D.B. Hunter (1972)
Numerische Mathematik
Zafar, Fiza, Mir, Nazir Ahmad (2008)
Journal of Inequalities and Applications [electronic only]
Nirmal Kumar Basu, Madhav Chandra Kundu (1977)
Aplikace matematiky
Milovanovic, Gradimir V., Cvetkovic, Aleksandar S. (2012)
Mathematica Balkanica New Series
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32In the first part of this survey paper we present a short account on some important properties of orthogonal polynomials on the real line, including computational methods for constructing coefficients in the fundamental three-term recurrence relation for orthogonal polynomials, and mention some basic facts on Gaussian quadrature rules. In the second part we discuss our Mathematica package Orthogonal Polynomials (see [2]) and show some applications to problems...
Marmasse, Claude, Wiener, Joseph (1988)
International Journal of Mathematics and Mathematical Sciences
Tchebichef, P. (1874)
Journal de Mathématiques Pures et Appliquées
Maria G. Armentano (2004)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
María G. Armentano (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
Acu, Ana Maria, Acu, Mugur, Rafiq, Arif (2008)
Acta Universitatis Apulensis. Mathematics - Informatics
D.B. Hunter (1973)
Numerische Mathematik
H.R. Kutt (1975)
Numerische Mathematik
A. van der Sluis (1972)
Numerische Mathematik
W.B. Jones (1976)
Numerische Mathematik
Ujević, Nenad (2004)
Georgian Mathematical Journal
R. Brombeer (1978)
Numerische Mathematik