Errata-Corrigé : «Les coefficients optimaux des formules d'intégration approximative»
In this note quadrature formula with error estimate for functions with simple pole is discussed. Chebyshev points of the second kind are used as the nodes of integration.
New convergence and rate-of-convergence results are established for two well-known quadrature rules for the numerical evaluation of Cauchy type principal value integrals along a finite interval, namely the Gauss quadrature rule and a similar interpolatory quadrature rule where the same nodes as in the Gauss rule are used. The main result concerns the convergence of the interpolatory rule for functions satisfying the Hölder condition with exponent less or equal to . The results obtained here supplement...
We present algorithms for the determination of polynomials orthogonal with respect to a positive weight function multiplied by a polynomial with simple roots inside the interval of integration. We apply these algorithms to search for and calculate all possible sequences of imbedded quadratures of maximal polynomials order of precision for the generalized Laguerre and Hermite weight functions.