Lösung von Differentialgleichungen mit Splinefunktionen. Eine Störungstheorie. Tei 1: Divergenzaussagen.
Previous Page 2
H. Werner, H. Hilgers (1986)
Numerische Mathematik
H. Arndt (1979)
Numerische Mathematik
Christoph Aistleitner, Josef Dick (2014)
Acta Arithmetica
We prove several results concerning the existence of low-discrepancy point sets with respect to an arbitrary non-uniform measure μ on the d-dimensional unit cube. We improve a theorem of Beck, by showing that for any d ≥ 1, N ≥ 1, and any non-negative, normalized Borel measure μ on there exists a point set whose star-discrepancy with respect to μ is of order . For the proof we use a theorem of Banaszczyk concerning the balancing of vectors, which implies an upper bound for the linear discrepancy...
Harald Niederreiter (1992)
Czechoslovak Mathematical Journal
Previous Page 2