Page 1 Next

Displaying 1 – 20 of 47

Showing per page

Natural and smoothing quadratic spline. (An elementary approach)

Jiří Kobza, Dušan Zápalka (1991)

Applications of Mathematics

For quadratic spine interpolating local integrals (mean-values) on a given mesh the conditions of existence and uniqueness, construction under various boundary conditions and other properties are studied. The extremal property of such's spline allows us to present an elementary construction and an algorithm for computing needed parameters of such quadratic spline smoothing given mean-values. Examples are given illustrating the results.

New efficient numerical method for 3D point cloud surface reconstruction by using level set methods

Kósa, Balázs, Haličková-Brehovská, Jana, Mikula, Karol (2017)

Proceedings of Equadiff 14

In this article, we present a mathematical model and numerical method for surface reconstruction from 3D point cloud data, using the level-set method. The presented method solves surface reconstruction by the computation of the distance function to the shape, represented by the point cloud, using the so called Fast Sweeping Method, and the solution of advection equation with curvature term, which creates the evolution of an initial condition to the final state. A crucial point for efficiency is...

Non-monotoneous parallel iteration for solving convex feasibility problems

Gilbert Crombez (2003)

Kybernetika

The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm...

Normal bivariate Birkhoff interpolation schemes and Pell equation

Marius Crainic, Nicolae Crainic (2009)

Commentationes Mathematicae Universitatis Carolinae

Finding the normal Birkhoff interpolation schemes where the interpolation space and the set of derivatives both have a given regular “shape” often amounts to number-theoretic equations. In this paper we discuss the relevance of the Pell equation to the normality of bivariate schemes for different types of “shapes”. In particular, when looking at triangular shapes, we will see that the conjecture in Lorentz R.A., Multivariate Birkhoff Interpolation, Lecture Notes in Mathematics, 1516, Springer, Berlin-Heidelberg,...

Currently displaying 1 – 20 of 47

Page 1 Next