Page 1

Displaying 1 – 9 of 9

Showing per page

Harmonic interpolation based on Radon projections along the sides of regular polygons

Irina Georgieva, Clemens Hofreither, Christoph Koutschan, Veronika Pillwein, Thotsaporn Thanatipanonda (2013)

Open Mathematics

Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.

Hermite interpolation: a survey of univariate computational methods.

G. Mühlbach (2002)

RACSAM

Se considera la interpolación de Hermite de funciones de una variable mediante polinomios generalizados. Se pretende mostrar que técnicas computacionales conocidas para interpolación polinómica se pueden aplicar también a interpolación mediante polinomios generalizados. Como aplicación se estudia con cierto detalle la interpolación mediante funciones racionales con polos prefijados. La interpolación polinómica corresponde al caso particular en que todos los polos prefijados están en el infinito.

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation

Nicolas Crouseilles, Guillaume Latu, Eric Sonnendrücker (2007)

International Journal of Applied Mathematics and Computer Science

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being...

Holt-Winters method with general seasonality

Tomáš Hanzák (2012)

Kybernetika

The paper suggests a generalization of widely used Holt-Winters smoothing and forecasting method for seasonal time series. The general concept of seasonality modeling is introduced both for the additive and multiplicative case. Several special cases are discussed, including a linear interpolation of seasonal indices and a usage of trigonometric functions. Both methods are fully applicable for time series with irregularly observed data (just the special case of missing observations was covered up...

How to increase convergence order of the Newton method to 2 × m ?

Sanjay Kumar Khattri (2014)

Applications of Mathematics

We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high...

Currently displaying 1 – 9 of 9

Page 1