On Clenshaws's Method and a Generalisation to Faber Series.
In this paper, we consider linear ordinary differential equations originating in electronic engineering, which exhibit exceedingly rapid oscillation. Moreover, the oscillation model is completely different from the familiar framework of asymptotic analysis of highly oscillatory integrals. Using a Bessel-function identity, we expand the oscillator into asymptotic series, and this allows us to extend Filon-type approach to this setting. The outcome is a time-stepping method that guarantees ...
A bicubic model for local smoothing of surfaces is constructed on the base of pivot points. Such an approach allows reducing the dimension of matrix of normal equations more than twice. The model enables to increase essentially the speed and stability of calculations. The algorithms, constructed by the aid of the offered model, can be used both in applications and the development of global methods for smoothing and approximation of surfaces.
The uniform convergence of a sequence of Lienhard approximation of a given continuous function is proved. Further, a method of numerical integration is derived which is based on the Lienhard interpolation method.