Quantitative versions of a result of Hecke in the theory of uniform distribution mod 1
Anisotropic adaptive methods based on a metric related to the Hessian of the solution are considered. We propose a metric targeted to the minimization of interpolation error gradient for a nonconforming linear finite element approximation of a given piecewise regular function on a polyhedral domain Ω of ℝd, d ≥ 2. We also present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative to such a nonconforming...
In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.
The paper studies polynomial approximation models with a new type of constraints that enable to get estimates with significant properties. Recently we enhanced a representation of polynomials based on three reference points. Here we propose a two-part cubic smoothing scheme that leverages this representation. The presence of these points in the model has several consequences. The most important one is the fact that by appropriate location of the reference points the resulting approximant of two...
Interpolating and approximating polynomials have been living separately more than two centuries. Our aim is to propose a general parametric regression model that incorporates both interpolation and approximation. The paper introduces first a new -point transformation that yields a function with a simpler geometrical structure than the original function. It uses reference points and decreases the polynomial degree by . Then a general representation of polynomials is proposed based on reference...