Iterative methods for the numerical solution of the boundary value problem of elasticity [Abstract of thesis]
For solving linear complementarity problems LCP more attention has recently been paid on a class of iterative methods called the matrix-splitting. But up to now, no paper has discussed the effect of preconditioning technique for matrix-splitting methods in LCP. So, this paper is planning to fill in this gap and we use a class of preconditioners with generalized Accelerated Overrelaxation (GAOR) methods and analyze the convergence of these methods for LCP. Furthermore, Comparison between our methods...
The time-ordered exponential of a time-dependent matrix is defined as the function of that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in . The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by . Yet, the existence of such inverses, crucial to...
The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci.35 (1997) 793–802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. ESAIM: M2AN41 (2007) 661–678]. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic...
A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space.
Metoda konjugovaných gradientů a Lanczosova metoda tvoří historický a metodologický základ tzv. metod krylovovských podprostorů pro numerickou aproximaci řešení lineárních rovnic a částečnou aproximaci spektra lineárních operátorů. Ačkoliv jsou v obecném povědomí spojovány především s numerickým řešením velmi rozsáhlých soustav lineárních algebraických rovnic a aproximací vlastních čísel velkých matic, je přirozené uvažovat jejich formulaci v kontextu operátorů na Hilbertových prostorech (konečné...