The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation , where is an arbitrary square complex matrix and ia s matrix such that the real part of the eigenvalues of the matrix is positive. Given an admissible error and a finite domain , and analytic-numerical solution whose error is uniformly upper bounded by in , is constructed.
This paper is concerned with the problem of computing a small number of eigenvalues of large sparse generalized eigenvalue problems. The matrices arise from mixed finite element discretizations of time dependent equations modelling viscous incompressible flow. The eigenvalues of importance are those with smallest real part and are used to determine the linearized stability of steady states, and could be used in a scheme to detect Hopf bifurcations. We introduce a modified Cayley transform of the...
By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) B-matrices, a new class of nonsingular matrices called CKV-type -matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness...
We investigate two ergodicity coefficients ɸ ∥∥ and τn−1, originally introduced to bound the subdominant eigenvalues of nonnegative matrices. The former has been generalized to complex matrices in recent years and several properties for such generalized version have been shown so far.We provide a further result concerning the limit of its powers. Then we propose a generalization of the second coefficient τ n−1 and we show that, under mild conditions, it can be used to recast the eigenvector problem...
Based on QR-like decomposition with column pivoting,
a new and efficient numerical method for solving symmetric matrix inverse
eigenvalue problems is proposed, which is suitable for both the distinct and
multiple eigenvalue cases. A locally quadratic convergence analysis is given.
Some numerical experiments are presented to illustrate our results.
In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out to evaluate HPEC performance...
Currently displaying 21 –
40 of
81