Tchebyshev Acceleration Technique for Large Scale Nonsymmetric Matrices.
Some dynamical systems are characterized by more than one time-scale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular perturbation methods based on the slow-fast decomposition can serve for an enhanced parameter estimation when the slowly changing features are rigorously treated. Although the ultimate goal is to reduce the standard error for the estimated parameters, here we test two methods for numerical approximations of...
Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on , and meshes. It is shown that the combination FEM yields (up to a factor ) the same order of accuracy in the associated...
We give detailed discussion of a procedure for determining the robust -stability of a real matrix. The procedure begins from the Hurwitz stability criterion. The procedure is applied to two numerical examples.