Previous Page 2

Displaying 21 – 39 of 39

Showing per page

Interval solutions of linear interval equations

Jiří Rohn (1990)

Aplikace matematiky

It is shown that if the concept of an interval solution to a system of linear interval equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations are to be solved to find a modified interval solution or to verify that no such solution exists.

Inverse du Laplacien discret dans le problème de Poisson-Dirichlet à deux dimensions sur un rectangle

Jean Chanzy (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....

Inverse eigenvalue problem for constructing a kind of acyclic matrices with two eigenpairs

Maryam Babaei Zarch, Seyed Abolfazl Shahzadeh Fazeli, Seyed Mehdi Karbassi (2020)

Applications of Mathematics

We investigate an inverse eigenvalue problem for constructing a special kind of acyclic matrices. The problem involves the reconstruction of the matrices whose graph is an m -centipede. This is done by using the ( 2 m - 1 ) st and ( 2 m ) th eigenpairs of their leading principal submatrices. To solve this problem, the recurrence relations between leading principal submatrices are used.

Iterative methods with analytical preconditioning technique to linear complementarity problems: application to obstacle problems

H. Saberi Najafi, S. A. Edalatpanah (2013)

RAIRO - Operations Research - Recherche Opérationnelle

For solving linear complementarity problems LCP more attention has recently been paid on a class of iterative methods called the matrix-splitting. But up to now, no paper has discussed the effect of preconditioning technique for matrix-splitting methods in LCP. So, this paper is planning to fill in this gap and we use a class of preconditioners with generalized Accelerated Overrelaxation (GAOR) methods and analyze the convergence of these methods for LCP. Furthermore, Comparison between our methods...

Iterative schemes for high order compact discretizations to the exterior Helmholtz equation∗

Yogi Erlangga, Eli Turkel (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...

Iterative schemes for high order compact discretizations to the exterior Helmholtz equation∗

Yogi Erlangga, Eli Turkel (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...

Currently displaying 21 – 39 of 39

Previous Page 2