The one-dimensional steady-state convection-diffusion problem for the unknown temperature of a medium entering the interval with the temperature and flowing with a positive velocity is studied. The medium is being heated with an intensity corresponding to for a constant . We are looking for a velocity with a given average such that the outflow temperature is maximal and discuss the influence of the boundary condition at the point on the “maximizing” function .
In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.
In this paper we study a discrete Raman laser amplification model
given as a Lotka-Volterra system.
We show that in an ideal situation,
the equations can be written as a Poisson system with
boundary conditions using a global change of coordinates.
We address the questions of existence and uniqueness of a solution.
We deduce numerical schemes for
the approximation of the solution that have good stability.