-widths for singularly perturbed problems
Kolmogorov -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
The paper is devoted to solving boundary value problems for self-adjoint linear differential equations of th order in the case that the corresponding differential operator is self-adjoint and positive semidefinite. The method proposed consists in transforming the original problem to solving several initial value problems for certain systems of first order ODEs. Even if this approach may be used for quite general linear boundary value problems, the new algorithms described here exploit the special...