Displaying 41 – 60 of 128

Showing per page

Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients

Yu Zhang, Hai Bi, Yidu Yang (2021)

Applications of Mathematics

In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on d -dimensional domains ( d = 2 , 3 ). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about...

Computation of 3D vertex singularities for linear elasticity : error estimates for a finite element method on graded meshes

Thomas Apel, Anna-Margarete Sändig, Sergey I. Solov'ev (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear...

Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes

Thomas Apel, Anna-Margarete Sändig, Sergey I. Solov'ev (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the computation of 3D vertex singularities of anisotropic elastic fields with Dirichlet boundary conditions, focusing on the derivation of error estimates for a finite element method on graded meshes. The singularities are described by eigenpairs of a corresponding operator pencil on spherical polygonal domains. The main idea is to introduce a modified quadratic variational boundary eigenvalue problem which consists of two self-adjoint, positive definite sesquilinear...

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Coulomb Interaction Effects on the Spin Polarization and Currents in Quantum Wires with Spin Orbit Interaction

Anton Heidar Thorolfsson, Andrei Manolescu, D.C. Marinescu, Vidar Gudmundsson (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

We analyze the charge and spin distributions induced in an interacting electron system confined inside a semiconductor quantum wire with spin orbit interaction in the presence of an external magnetic field. The wire, assumed to be infinitely long, is obtained through lateral confinement in three different materials: GaAs, InAs, and InSb. The spin-orbit coupling, linear in the electron momentum is of both Rashba and Dresselhaus type. Within the Hartree-Fock approximation the many-body Hamiltonian...

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

Emmanuel Creusé, Serge Nicaise (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L 2 norm for the sequence of discrete operators....

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L2 norm for the sequence of discrete...

Error estimates for the Coupled Cluster method

Thorsten Rohwedder, Reinhold Schneider (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Coupled Cluster (CC) method is a widely used and highly successful high precision method for the solution of the stationary electronic Schrödinger equation, with its practical convergence properties being similar to that of a corresponding Galerkin (CI) scheme. This behaviour has for the discrete CC method been analyzed with respect to the discrete Galerkin solution (the “full-CI-limit”) in [Schneider, 2009]. Recently, we globalized the CC formulation to the full continuous space, giving a root...

Finite element analysis of sloshing and hydroelastic vibrations under gravity

Alfredo Bermúdez, Rodolfo Rodríguez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with a finite element method to solve fluid-structure interaction problems. More precisely it concerns the numerical computation of harmonic hydroelastic vibrations under gravity. It is based on a displacement formulation for both the fluid and the solid. Gravity effects are included on the free surface of the fluid as well as on the liquid-solid interface. The pressure of the fluid is used as a variable for the theoretical analysis leading to a well posed mixed linear eigenvalue...

Currently displaying 41 – 60 of 128