Alternating direction Galerkin method with capacitance matrix for the parabolic problem with natural boundary condition
We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...
We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...
We derive a residual based a posteriori error estimate for the Stokes-Brinkman problem on a two-dimensional polygonal domain. We use Taylor-Hood triangular elements. The link to the possible information on the regularity of the problem is discussed.
The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent...
We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments...
An nonlinear elliptic system for generating adaptive quadrilateral meshes in curved domains is presented. The presented technique has been implemented in the C++ language with the help of the standard template library. The software package writes the converged meshes in the GMV and the Matlab formats. Grid generation is the first very important step for numerically solving partial differential equations. Thus, the presented C++ grid generator is extremely important to the computational science community....
An alternating-direction iterative procedure is described for a class of Helmholz-like problems. An algorithm for the selection of the iteration parameters is derived; the parameters are complex with some having positive real part and some negative, reflecting the noncoercivity and nonsymmetry of the finite element or finite difference matrix. Examples are presented, with an applications to wave propagation.
This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in Lp-norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate a priori information of smoothness/sparsity on the inhomogeneity through Tikhonov...