A space lower bound for acceptance by one-way -alternating machines
We show that one-way Π2-alternating Turing machines cannot accept unary nonregular languages in o(log n) space. This holds for an accept mode of space complexity measure, defined as the worst cost of any accepting computation. This lower bound should be compared with the corresponding bound for one-way Σ2-alternating machines, that are able to accept unary nonregular languages in space O(log log n). Thus, Σ2-alternation is more powerful than Π2-alternation for space bounded one-way machines with...
This survey presents major results and issues related to the study of NPO problems in dynamic environments, that is, in settings where instances are allowed to undergo some modifications over time. In particular, the survey focuses on two complementary frameworks. The first one is the reoptimization framework, where an instance I that is already solved undergoes some local perturbation. The goal is then to make use of the information provided by the initial solution to compute a new solution. The...
This survey presents major results and issues related to the study of NPO problems in dynamic environments, that is, in settings where instances are allowed to undergo some modifications over time. In particular, the survey focuses on two complementary frameworks. The first one is the reoptimization framework, where an instance I that is already solved undergoes some local perturbation. The goal is then to make use of the information provided by the initial solution to compute a new solution. The...
The work concerns formal verification of workflow-oriented software models using the deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are regarded as a set of temporal logic formulas, seems to be a significant obstacle for an inexperienced user when applying the deductive approach. A system, along with its architecture, for deduction-based verification of workflow-oriented models is proposed. The process inference is...
Motivated by the work of Chmutov, Duzhin and Lando on Vassiliev invariants, we define a polynomial on weighted graphs which contains as specialisations the weighted chromatic invariants but also contains many other classical invariants including the Tutte and matching polynomials. It also gives the symmetric function generalisation of the chromatic polynomial introduced by Stanley. We study its complexity and prove hardness results for very restricted classes of graphs.
Recently, Constantinescu and Ilie proved a variant of the well-known periodicity theorem of Fine and Wilf in the case of two relatively prime abelian periods and conjectured a result for the case of two non-relatively prime abelian periods. In this paper, we answer some open problems they suggested. We show that their conjecture is false but we give bounds, that depend on the two abelian periods, such that the conjecture is true for all words having length at least those bounds and show that some...