On the recognizability of self-generating sets.
Given a finite alphabet Σ and a language L ⊆ ∑+, the centralizer of L is defined as the maximal language commuting with it. We prove that if the primitive root of the smallest word of L (with respect to a lexicographic order) is prefix distinguishable in L then the centralizer of L is as simple as possible, that is, the submonoid L*. This lets us obtain a simple proof of a known result concerning the centralizer of nonperiodic three-word languages.
Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural assumptions...
Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural...
The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.
For any two positive integers and , let be a digraph whose set of vertices is and such that there is a directed edge from a vertex to a vertex if . Let be the prime factorization of . Let be the set of all primes dividing and let be such that and . A fundamental constituent of , denoted by , is a subdigraph of induced on the set of vertices which are multiples of and are relatively prime to all primes . L. Somer and M. Křížek proved that the trees attached to all cycle...
This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.
A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.
Motivated by the wavelength division multiplexing in all-optical networks, we consider the problem of finding an optimal (with respect to the least possible number of wavelengths) set of ƒ+1 internally node disjoint dipaths connecting all pairs of distinct nodes in the binary r-dimensional hypercube, where 0 ≤ ƒ < r. This system of dipaths constitutes a routing protocol that remains functional in the presence of up to ƒ faults (of nodes and/or links). The problem of constructing such...
We address the problem to know whether the relation induced by a one-rule length-preserving rewrite system is rational. We partially answer to a conjecture of Éric Lilin who conjectured in 1991 that a one-rule length-preserving rewrite system is a rational transduction if and only if the left-hand side u and the right-hand side v of the rule of the system are not quasi-conjugate or are equal, that means if u and v are distinct, there do not exist words x, y and z such that u = xyz and v = zyx. We...
We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient...
We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient...
For a given induced hereditary property 𝓟, a 𝓟-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property 𝓟. We consider the effectiveness of on-line 𝓟-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function of any stingy on-line 𝓟-coloring algorithm. In the class of generalized...
In the context of a conjecture of Erdős and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e., with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning the remaining case q = 2 (which corresponds to the conjecture of Erdős and Gyárfás), we show that there exist arbitrarily large cubic graphs whose all 2-power cycles have length 4 only, or 8 only.
On peut définir la pente d'un mot écrit avec des 0 et des 1 comme le nombre de 1 divisé par le nombre de 0, et généraliser cette définition aux mots de longueur infinie. Considérant le lien entre les mots de Christoffel et les fractions continues, on se propose d'étudier le comportement de tels mots lorsqu'on additionne leurs pentes, ou qu'on les multiplie par un entier positif. Après un bref exposé des différentes notions liées aux mots de Christoffel, l'étude de la somme et de la multiplication...