Scheduling trajectories on a planar surface with moving obstacles.
The article focuses on the application of the segmentation algorithm based on the numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This equation is related to the motion of curves by mean curvature. It exhibits several suitable mathematical properties including stable solution profile. This allows the user to follow accurately the position of the segmentation curve by bringing it quickly to the vicinity of the segmented object and by approaching the details...
In this paper we deal with two problems related to imprecision in colour image segmentation processes: to decide whether a set of pixels verify the property to be homogeneously coloured, and to represent the set of possible segmentations of an image at different precision levels. In order to solve the first problem we introduce a measure of distance between colours in the CIE L*a*b* space, that allows us to measure the degree of homogeneity of two pixels p and q on the basis of the maximum distance...
Combat Management System training uses simulation of an overall tactical situation. This involves the real-time management of numerous and diverse entities to keep the simulation scenario consistent in a highly dynamic environment. To address this difficult problem, we propose an adaptive multi-agent system in which each entity is considered as a smart sensor/effector mobile. The autonomy and the dynamic behaviour offered to each entity leads the simulation to self-adapt to inevitable disturbances...
This paper deals with the properties of self-avoiding walks defined on the lattice with the 8-neighbourhood system. We compute the number of walks, bridges and mean-square displacement for N=1 through 13 (N is the number of steps of the self-avoiding walk). We also estimate the connective constant and critical exponents, and study finite memory and generating functions. We show applications of this kind of walk. In addition, we compute upper bounds for the number of walks and the connective constant....
Contour maps are frequently used to represent three-dimensional surfaces from geographical applications or experimental results. In this paper, two new algorithms for the generation and display of such contours are presented. The first of them uses local spline interpolation to obtain contour maps from data points in a rectangular mesh, whereas the other interpolates a set of irregular points through recursive subdivision of triangles. In both algorithms, precision of the contours can be adjusted...
We introduce a skeletal structure in , which is an - dimensional Whitney stratified set on which is defined a multivalued “radial vector field” . This is an extension of notion of the Blum medial axis of a region in with generic smooth boundary. For such a skeletal structure there is defined an “associated boundary” . We introduce geometric invariants of the radial vector field on and a “radial flow” from to . Together these allow us to provide sufficient numerical conditions for...
Parametric software cost estimation models are well-known and widely used estimation tools, and several fuzzy extensions have been proposed to introduce a explicit handling of imprecision and uncertainty as part of them. Nonetheless, such extensions do not consider two basic facts that affect the inputs of software cost parametric models: cost drivers are often expressed through vague linguistic categories, and in many cases cost drivers are better expressed in terms of aggregations of second-level...