Multibump periodic motions of an infinite lattice of particles.
Parallel replica dynamics is a method for accelerating the computation of processes characterized by a sequence of infrequent events. In this work, the processes are governed by the overdamped Langevin equation. Such processes spend much of their time about the minima of the underlying potential, occasionally transitioning into different basins of attraction. The essential idea of parallel replica dynamics is that the exit distribution from a given well for a single process can be approximated by...
We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties...
Mostramos la existencia de dos curvas de datos iniciales (x0, v0) para las cuales las soluciones x(t) correspondientes del problema de Cauchy asociado a la ecuación xtt + |xt|α-1 xt + x = 0, supuesto α ∈ (0,1), se anulan idénticamente después de un tiempo finito. Mediante métodos asintóticos y argumentos de comparación mostramos que para muchos otros datos iniciales las soluciones decaen a 0, en un tiempo infinito, como t-α / (1-α).
In this paper, we treat the class of nonlinear uncertain dynamic systems that was considered in [3,2,1,4]. We consider continuous-time dynamical systems whose nominal part is linear and whose uncertain part is norm-bounded. We study the problems of state observation and obtaining stabilizing controller for uncertain nonlinear systems, where the uncertainties are characterized by known bounds.