Page 1 Next

Displaying 1 – 20 of 255

Showing per page

On a 1-D model of stress relaxation in an annealed glass

Vladimír Janovský, David Just (2002)

Applications of Mathematics

A 1-D model of a slab of glass of a small thickness is considered. The governing equations are those of the classical 1-D linear viscoelasticity. A load due to the temperature gradients is assumed. The aim is to model the process called annealing. It is shown that an additional load due to structural strain is crucial for the success of the model. Algorithms of a numerical solution of the governing equations are proposed. Numerical results are presented and commented.

On a 3D-Hypersingular Equation of a Problem for a Crack

Samko, Stefan (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 45DB05, 45E05, 78A45We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation.

On a computational approach to multiple contacts / impacts of elastic bodies

Vala, Jiří, Rek, Václav (2023)

Programs and Algorithms of Numerical Mathematics

The analysis of dynamic contacts/impacts of several deformable bodies belongs to both theoretically and computationally complicated problems, because of the presence of unpleasant nonlinearities and of the need of effective contact detection. This paper sketches how such difficulties can be overcome, at least for a model problem with several elastic bodies, using i) the explicit time-discretization scheme and ii) the finite element technique adopted to contact evaluations together with iii) the...

On a constrained minimization problem arising in hemodynamics

João Janela, Adélia Sequeira (2008)

Banach Center Publications

Experimental evidence collected over the years shows that blood exhibits non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield stress and thixotropic behaviour. Under certain conditions these characteristics become relevant and must be taken into consideration when modelling blood flow. In this work we deal with incompressible generalized Newtonian fluids, that account for the non-constant viscosity of blood, and present a new numerical method to handle fluid-rigid body interaction...

On a contact problem for a viscoelastic von Kármán plate and its semidiscretization

Igor Bock, Ján Lovíšek (2005)

Applications of Mathematics

We deal with the system describing moderately large deflections of thin viscoelastic plates with an inner obstacle. In the case of a long memory the system consists of an integro-differential 4th order variational inequality for the deflection and an equation with a biharmonic left-hand side and an integro-differential right-hand side for the Airy stress function. The existence of a solution in a special case of the Dirichlet-Prony series is verified by transforming the problem into a sequence of...

On a mathematical model for the crystallization of polymers

Maria Pia Gualdani (2003)

Bollettino dell'Unione Matematica Italiana

We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint W e q on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...

On a new computational algorithm for impacts of elastic bodies

Hynek Štekbauer, Ivan Němec, Rostislav Lang, Daniel Burkart, Jiří Vala (2022)

Applications of Mathematics

Computational modelling of contact problems is still one of the most difficult aspects of non-linear analysis in engineering mechanics. The article introduces an original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the conservation of both momentum and energy exactly. The algorithm is described in its linearized 2-dimensional formulation in details, as open to numerous generalizations including 3-dimensional ones, and supplied by numerical examples obtained from...

On a nonlinear equation of the vibrating string

Angela Iannelli, Giovanni Prouse, Alessandro Veneziani (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A nonlinear model of the vibrating string is studied and global existence and uniqueness theorems for the solution of the Cauchy-Dirichlet problem are given. The model is then compared to the classical D'Alembert model and to a nonlinear model due to Kirchhoff.

Currently displaying 1 – 20 of 255

Page 1 Next