Variational and numerical analysis of the Signorini's contact problem in viscoplasticity with damage.
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained...
Existence of a solution of the problem of nonlinear elasticity with non-classical boundary conditions, when the relationship between the corresponding dual quantities is given in terms of a nonmonotone and generally multivalued relation. The mathematical formulation leads to a problem of non-smooth and nonconvex optimization, and in its weak form to hemivariational inequalities and to the determination of the so called substationary points of the given potential.
We consider variational problems of P. D. E. depending on a small parameter when the limit process implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first...
We examine how the use of typical techniques from non-convex vector variational problems can help in understanding optimal design problems in conductivity. After describing the main ideas of the underlying analysis and providing some standard material in an attempt to make the exposition self-contained, we show how those ideas apply to a typical optimal desing problem with two different conducting materials. Then we examine the equivalent relaxed formulation to end up with a new problem whose numerical...
We examine how the use of typical techniques from non-convex vector variational problems can help in understanding optimal design problems in conductivity. After describing the main ideas of the underlying analysis and providing some standard material in an attempt to make the exposition self-contained, we show how those ideas apply to a typical optimal desing problem with two different conducting materials. Then we examine the equivalent relaxed formulation to end up with a new problem whose numerical...
We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...
The eigenmodes and the vibrational density of states of the ground state configuration of graphene clusters are calculated using atomistic simulations. The modified Brenner potential is used to describe the carbon-carbon interaction and carbon-hydrogen interaction in case of H-passivated edges. For a given configuration of the C-atoms the eigenvectors and eigenfrequencies of the normal modes are obtained after diagonalisation of the dynamical matrix whose elements are the second derivative of the...
We consider mathematical models describing dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles. We model the contact with Signorini's complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented....