Displaying 61 – 80 of 140

Showing per page

Junction of elastic plates and beams

Antonio Gaudiello, Régis Monneau, Jacqueline Mossino, François Murat, Ali Sili (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the linearized elasticity system in a multidomain of 𝐑 3 . This multidomain is the union of a horizontal plate with fixed cross section and small thickness ε, and of a vertical beam with fixed height and small cross section of radius r ε . The lateral boundary of the plate and the top of the beam are assumed to be clamped. When ε and r ε tend to zero simultaneously, with r ε ε 2 , we identify the limit problem. This limit problem involves six junction conditions.

L p - L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

Jerzy Gawinecki (1991)

Annales Polonici Mathematici

We prove the L p - L q -time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the L p - L q -time decay estimates.

Linear approximation in Continuum Mechanics

Giuseppe Grioli (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Some critical remarks are made about the theory of Linear Elasticity, questioning on its validity in general. An alternative linear approximation of the exact theory is proposed.

Localization effects for eigenfunctions near to the edge of a thin domain

Serguei A. Nazarov (2002)

Mathematica Bohemica

It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain Ω h is localized either at the whole lateral surface Γ h of the domain, or at a point of Γ h , while the eigenfunction decays exponentially inside Ω h . Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too.

Mathematical analysis for the peridynamic nonlocal continuum theory

Qiang Du, Kun Zhou (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

Mathematical analysis for the peridynamic nonlocal continuum theory*

Qiang Du, Kun Zhou (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.

Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modelling of incompressible charged porous media

Kamyar Malakpoor, Enrique F. Kaasschieter, Jacques M. Huyghe (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory in which a deformable and charged porous medium is saturated with a fluid with dissolved ions. Four components are defined: solid, liquid, cations and anions. The aim of this paper is the construction of the Lagrangian model of the four-component system. It is shown that, with the choice of Lagrangian description of the solid skeleton, the motion of the other components can be described in terms of...

Mathematical modelling of rock bolt reinforcement

Runt, David, Novotný, Jaroslav, Pruška, Jan (2017)

Programs and Algorithms of Numerical Mathematics

Rock bolts as construction elements are often used in underground civil engineering projects. This work deals with their numerical modelling. Aydan special finite elements for the description of rock bolts and hexahedral quadratic finite elements for the description of rock massif were used. A code for the computation of stiffness matrices and right hand sides of these elements was developed. The code was tested on several simple test examples and their results were compared with the analytical...

Mesh r-adaptation for unilateral contact problems

Pierre Béal, Jonas Koko, Rachid Touzani (2002)

International Journal of Applied Mathematics and Computer Science

We present a mesh adaptation method by node movement for two-dimensional linear elasticity problems with unilateral contact. The adaptation is based on a hierarchical estimator on finite element edges and the node displacement techniques use an analogy of the mesh topology with a spring network. We show, through numerical examples, the efficiency of the present adaptation method.

Multiscale expansion and numerical approximation for surface defects⋆

V. Bonnaillie-Noël, D. Brancherie, M. Dambrine, F. Hérau, S. Tordeux, G. Vial (2011)

ESAIM: Proceedings

This paper is a survey of articles [5, 6, 8, 9, 13, 17, 18]. We are interested in the influence of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion or several well-separated inclusions have been deeply studied. We recall here techniques to construct an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic...

Multiscale finite element coarse spaces for the application to linear elasticity

Marco Buck, Oleg Iliev, Heiko Andrä (2013)

Open Mathematics

We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction...

Nouvelles propriétés des courbes et relation de dispersion en élasticité linéaire

Tark Bouhennache, Yves Dermenjian (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the case of an elastic strip we exhibit two properties of dispersion curves λn,n ≥ 1, that were not pointed out previously. We show cases where λ'n(0) = λ''n(0) = λ'''n(0) = 0 and we point out that these curves are not automatically monotoneous on + . The non monotonicity was an open question (see [2], for example) and, for the first time, we give a rigourous answer. Recall the characteristic property of the dispersion curves: {λn(p);n ≥ 1} is the set of eigenvalues of Ap, counted with their...

Currently displaying 61 – 80 of 140