Page 1

Displaying 1 – 7 of 7

Showing per page

Homogenization of linear elasticity equations

Jan Franců (1982)

Aplikace matematiky

The homogenization problem (i.e. the approximation of the material with periodic structure by a homogeneous one) for linear elasticity equation is studied. Both formulations in terms of displacements and in terms of stresses are considered and the results compared. The homogenized equations are derived by the multiple-scale method. Various formulae, properties of the homogenized coefficients and correctors are introduced. The convergence of displacment vector, stress tensor and local energy is proved...

Homogenization of many-body structures subject to large deformations

Philipp Emanuel Stelzig (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an initial brittle bond with their neighbors. Noninterpenetration...

Homogenization of many-body structures subject to large deformations

Philipp Emanuel Stelzig (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an...

Currently displaying 1 – 7 of 7

Page 1