The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Recall that a smooth Riemannian metric on a simply connected domain can be realized as the pull-back metric of an orientation preserving deformation if and only if the associated Riemann curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding the closest metric realization. We set up a variational formulation of this problem by introducing the non-Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence under the proper...
Recall that a smooth Riemannian metric on a simply connected domain can
be realized as the pull-back metric of an orientation preserving deformation if
and only if the associated Riemann curvature tensor vanishes identically.
When this condition fails, one seeks a deformation yielding
the closest metric realization.
We set up a variational formulation of this problem by
introducing the non-Euclidean version of the nonlinear
elasticity functional, and establish its Γ-convergence under the proper
scaling....
We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9, 10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that...
We analyse the sensitivity of the solution of a nonlinear obstacle plate
problem, with respect to small perturbations of the middle plane
of the plate. This analysis, which generalizes the results of [9,10]
for the linear case,
is done by application of an abstract variational
result [6], where the sensitivity of parameterized variational
inequalities in Banach spaces, without uniqueness of solution,
is quantified in terms of a generalized
derivative, that is the proto-derivative. We prove that...
The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...
An elastic simply supported axisymmetric plate of given volume, fixed on an elastic foundation, is considered. The design variable is taken to be the thickness of the plate. The thickness and its partial derivatives of the first order are bounded. The load consists of a concentrated force acting in the centre of the plate, forces concentrated on the circle, an axisymmetric load and the weight of the plate. The cost functional is the norm in the weighted Sobolev space of the deflection curve of radius....
A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
In this note we give a result of convergence when time goes to infinity for a
quasi static linear elastic model, the elastic tensor of which vanishes at
infinity. This method is applied to segmentation of medical images, and improves
the 'elastic deformable template' model introduced previously.
In this paper, we compare a biomechanics empirical model of the heart fibrous structure to two models obtained by a non-periodic homogenization process. To this end, the two homogenized models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic elastic materials is also derived and allows us to obtain a third simplified model.
Si considerano due spazi e , Riemanniani e a metrica eventualmente indefinita, riferiti a sistemi di co-ordinate e ; e inoltre un doppio tensore associato ai punti e . Si pensa dato da una funzione di altri tali doppi tensori e di variabili puntuali , e ; poi si considera la funzione composta Nella Parte I si scrivono due regole per eseguire la derivazione totale di questa, connessa con una mappa
As a measure of deformation we can take the difference , where is the deformation gradient of the mapping and is the deformation gradient of the mapping , which represents some proper rigid motion. In this article, the norm is estimated by means of the scalar measure of nonlinear strain. First, the estimates are given for a deformation satisfying the condition . Then we deduce the estimate in the case that is a bi-Lipschitzian deformation and .
Currently displaying 1 –
20 of
49