The search session has expired. Please query the service again.
The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented lagrangians allows to apply an infinite-dimensional...
The 2D-Signorini contact problem with Tresca and Coulomb friction
is discussed in infinite-dimensional Hilbert spaces. First, the
problem with given friction (Tresca friction) is considered. It
leads to a constraint non-differentiable minimization problem. By
means of the Fenchel duality theorem this problem can be transformed
into a constrained minimization involving a smooth functional. A
regularization technique for the dual problem motivated by augmented
Lagrangians allows to apply an...
Bhattacharya and Kohn have used small-strain (geometrically linear)
elasticity to analyze the recoverable strains of shape-memory polycrystals.
The adequacy of small-strain theory is open to question, however, since some
shape-memory materials recover as much as 10 percent strain. This paper
provides the first progress toward an analogous geometrically nonlinear
theory. We consider a model problem, involving polycrystals made
from a two-variant elastic material in two space dimensions. The linear
theory...
We prove the existence of global in time weak solutions to a three-dimensional system of equations arising in a simple version of the Fried-Gurtin model for the isothermal phase transition in solids. In this model the phase is characterized by an order parameter. The problem considered here has the form of a coupled system of three-dimensional elasticity and parabolic equations. The system is studied with the help of the Faedo-Galerkin method using energy estimates.
We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.
We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations.
We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem.
The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the -limit of this
energy (suitably rescaled),...
A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...
A unified framework for analyzing the existence of ground states in wide
classes of elastic complex bodies is presented here. The approach makes use
of classical semicontinuity results, Sobolev mappings and Cartesian
currents. Weak diffeomorphisms are used to represent macroscopic
deformations. Sobolev maps and Cartesian currents describe the inner
substructure of the material elements. Balance equations for irregular
minimizers are derived. A contribution to the debate about the role of the
balance...
Currently displaying 1 –
17 of
17