Page 1 Next

Displaying 1 – 20 of 43

Showing per page

A convergence result and numerical study for a nonlinear piezoelectric material in a frictional contact process with a conductive foundation

El-Hassan Benkhira, Rachid Fakhar, Youssef Mandyly (2021)

Applications of Mathematics

We consider two static problems which describe the contact between a piezoelectric body and an obstacle, the so-called foundation. The constitutive relation of the material is assumed to be electro-elastic and involves the nonlinear elastic constitutive Hencky's law. In the first problem, the contact is assumed to be frictionless, and the foundation is nonconductive, while in the second it is supposed to be frictional, and the foundation is electrically conductive. The contact is modeled with the...

A model of macroscale deformation and microvibration in skeletal muscle tissue

Bernd Simeon, Radu Serban, Linda R. Petzold (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with modeling the passive behavior of skeletal muscle tissue including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformation and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces...

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

Abstract quasi-variational inequalities of elliptic type and applications

Yusuke Murase (2009)

Banach Center Publications

A class of quasi-variational inequalities (QVI) of elliptic type is studied in reflexive Banach spaces. The concept of QVI was earlier introduced by A. Bensoussan and J.-L. Lions [2] and its general theory has been developed by many mathematicians, for instance, see [6, 7, 9, 13] and a monograph [1]. In this paper we give a generalization of the existence theorem established in [14]. In our treatment we employ the compactness method along with a concept of convergence of nonlinear multivalued operators...

An extension of small-strain models to the large-strain range based on an additive decomposition of a logarithmic strain

Horák, Martin, Jirásek, Milan (2013)

Programs and Algorithms of Numerical Mathematics

This paper describes model combining elasticity and plasticity coupled to isotropic damage. However, the conventional theory fails after the loss of ellipticity of the governing differential equation. From the numerical point of view, loss of ellipticity is manifested by the pathological dependence of the results on the size and orientation of the finite elements. To avoid this undesired behavior, the model is regularized by an implicit gradient formulation. Finally, the constitutive model is extended...

BV solutions of rate independent differential inclusions

Pavel Krejčí, Vincenzo Recupero (2014)

Mathematica Bohemica

We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For BV (bounded variation) data we compare different notions of BV solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case...

Continuity of the non-convex play operator in the space of rectifiable curves

Jana Kopfová, Vincenzo Recupero (2023)

Applications of Mathematics

We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the B V -norm and to the B V -strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent.

Curl bounds grad on SO(3)

Ingo Münch, Patrizio Neff (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461–1506; John, Comme Pure Appl. Math. 14 (1961) 391–413; Reshetnyak, Siberian Math. J. 8 (1967) 631–653)] as well as an associated linearized theorem...

Curl bounds Grad on SO(3)

Patrizio Neff, Ingo Münch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let F p GL ( 3 ) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [ F p ] · ( F p ) T applied to rotations controls the gradient in the sense that pointwise R C 1 ( 3 , SO ( 3 ) ) : Curl [ R ] · R T 𝕄 3 × 3 2 1 2 D R 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math.55 (2002) 1461–1506; John, Comme Pure Appl. Math.14 (1961) 391–413; Reshetnyak, Siberian Math. J.8 (1967) 631–653)] as well as an associated linearized theorem saying...

Dislocation dynamics - analytical description of the interaction force between dipolar loops

Vojtěch Minárik, Jan Kratochvíl (2007)

Kybernetika

The interaction between dislocation dipolar loops plays an important role in the computation of the dislocation dynamics. The analytical form of the interaction force between two loops derived in the present paper from Kroupa’s formula of the stress field generated by a single dipolar loop allows for faster computation.

Estimation of EDZ zones in great depths by elastic-plastic models

Sysala, Stanislav (2023)

Programs and Algorithms of Numerical Mathematics

This contribution is devoted to modeling damage zones caused by the excavation of tunnels and boreholes (EDZ zones) in connection with the issue of deep storage of spent nuclear fuel in crystalline rocks. In particular, elastic-plastic models with Mohr-Coulomb or Hoek-Brown yield criteria are considered. Selected details of the numerical solution to the corresponding problems are mentioned. Possibilities of elastic and elastic-plastic approaches are illustrated by a numerical example.

Functional a posteriori error estimates for incremental models in elasto-plasticity

Sergey Repin, Jan Valdman (2009)

Open Mathematics

We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants...

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...

Generalised functions of bounded deformation

Gianni Dal Maso (2013)

Journal of the European Mathematical Society

We introduce the space G B D of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for G B D , which leads to a compactness result for the space G S B D of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational...

Gradient theory for plasticity via homogenization of discrete dislocations

Adriana Garroni, Giovanni Leoni, Marcello Ponsiglione (2010)

Journal of the European Mathematical Society

We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the Γ -limit of this energy (suitably rescaled),...

Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals

Jaroslav Haslinger, Sergey Repin, Stanislav Sysala (2016)

Applications of Mathematics

The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to...

Implicit constitutive solution scheme for Mohr-Coulomb plasticity

Sysala, Stanislav, Čermák, Martin (2017)

Programs and Algorithms of Numerical Mathematics

This contribution summarizes an implicit constitutive solution scheme of the elastoplastic problem containing the Mohr-Coulomb yield criterion, a nonassociative flow rule, and a nonlinear isotropic hardening. The presented scheme builds upon the subdifferential formulation of the flow rule leading to several improvements. Mainly, it is possible to detect a position of the unknown stress tensor on the Mohr-Coulomb pyramid without blind guesswork. Further, a simplified construction of the consistent...

Currently displaying 1 – 20 of 43

Page 1 Next