Displaying 101 – 120 of 152

Showing per page

Rate independent Kurzweil processes

Pavel Krejčí, Matthias Liero (2009)

Applications of Mathematics

The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in B V spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree...

Regularity of displacement solutions in Hencky plasticity. II: The main result

Jarosław L. Bojarski (2011)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. Here, a non-homogeneous material is considered, where the elastic-plastic properties change discontinuously. In the first part, we have found the extremal relation between the displacement formulation defined on the space of bounded deformation and the stress formulation of the variational problem in Hencky plasticity. In the second part, we prove that the displacement...

Regularity of displacement solutions in Hencky plasticity. I: The extremal relation

Jarosław L. Bojarski (2011)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. A non-homogeneous material whose elastic-plastic properties change discontinuously is considered. We find (in an explicit form) the extremal relation between the displacement formulation (defined on the space of bounded deformation) and the stress formulation of the variational problem in Hencky plasticity. This extremal relation is used in the proof of the regularity of displacements. ...

Regularity of solutions in plasticity. I: Continuum

Jarosław L. Bojarski (2003)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space L D ( Ω ) u L ¹ ( Ω , ) | u + ( u ) T L ¹ ( Ω , n × n ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Regularity of solutions in plasticity. II: Plates

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space W 2 , 1 ( Ω ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Reliable computation and local mesh adaptivity in limit analysis

Sysala, Stanislav, Haslinger, Jaroslav, Repin, Sergey (2019)

Programs and Algorithms of Numerical Mathematics

The contribution is devoted to computations of the limit load for a perfectly plastic model with the von Mises yield criterion. The limit factor of a prescribed load is defined by a specific variational problem, the so-called limit analysis problem. This problem is solved in terms of deformation fields by a penalization, the finite element and the semismooth Newton methods. From the numerical solution, we derive a guaranteed upper bound of the limit factor. To achieve more accurate results, a local...

Reliable solution of an elasto-plastic Reissner-Mindlin beam for Hencky's model with uncertain yield function

Ivan Hlaváček (1998)

Applications of Mathematics

We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of the von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data.

Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function

Ivan Hlaváček (1996)

Applications of Mathematics

Maximization problems are formulated for a class of quasistatic problems in the deformation theory of plasticity with respect to an uncertainty in the material function. Approximate problems are introduced on the basis of cubic Hermite splines and finite elements. The solvability of both continuous and approximate problems is proved and some convergence analysis presented.

Shakedown theorems in poroplastic dynamics

Giuseppe Cocchetti, Giulio Maier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.

Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček (1991)

Applications of Mathematics

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Shape optimization of elasto-plastic bodies

Zuzana Dimitrovová (2001)

Applications of Mathematics

Existence of an optimal shape of a deformable body made from a physically nonlinear material obeying a specific nonlinear generalized Hooke’s law (in fact, the so called deformation theory of plasticity is invoked in this case) is proved. Approximation of the problem by finite elements is also discussed.

Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method

Jindřich Nečas, Ivan Hlaváček (1983)

Aplikace matematiky

A problem of unilateral contact between an elasto-plastic body and a rigid frictionless foundation is solved within the range of the so called deformation theory of plasticity. The weak solution is defined by means of a variational inequality. Then the so called secant module (Kačanov's) iterative method is introduced, each step of which corresponds to a Signorini's problem of elastoplastics. The convergence of the method is proved on an abstract level.

Sottopotenziali energia libera per l'isteresi meccanica

Claudio Giorgi (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper deals with free-energy lower-potentials for some rate-independent one-dimensional models of isothermal finite elastoplasticity proposed in [1]. Extending the thermodynamic arguments of Coleman and Owen [3] to large deformations, the existence, non-uniqueness and regularity of free-energy as function of state are deduced rather than assumed. This approach, along with some optimal control techniques, enables us to construct maximum and minimum free-energy functions and a wide class of differentiable...

Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity

Victor A. Kovtunenko, Ján Eliaš, Pavel Krejčí, Giselle A. Monteiro, Judita Runcziková (2023)

Archivum Mathematicum

A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite...

Currently displaying 101 – 120 of 152