Previous Page 2

Displaying 21 – 28 of 28

Showing per page

On quasistatic inelastic models of gradient type with convex composite constitutive equations

Krzysztof Chełmiński (2003)

Open Mathematics

This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.

On the two-step iterative method of solving frictional contact problems in elasticity

Todor Angelov, Asterios Liolios (2005)

International Journal of Applied Mathematics and Computer Science

A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.

Semicontinuity theorem in the micropolar elasticity

Josip Tambača, Igor Velčić (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we investigate the equivalence of the sequential weak lower semicontinuity of the total energy functional and the quasiconvexity of the stored energy function of the nonlinear micropolar elasticity. Based on techniques of Acerbi and Fusco [Arch. Rational Mech. Anal.86 (1984) 125–145] we extend the result from Tambača and Velčić [ESAIM: COCV (2008) DOI: 10.1051/cocv:2008065] for energies that satisfy the growth of order p≥ 1. This result is the main step towards the general existence...

The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory

Ammar Derbazi, Mohamed Dalah, Amar Megrous (2016)

Applications of Mathematics

We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent...

Currently displaying 21 – 28 of 28

Previous Page 2