Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Theoretical analysis of discrete contact problems with Coulomb friction

Tomáš Ligurský (2012)

Applications of Mathematics

A discrete model of the two-dimensional Signorini problem with Coulomb friction and a coefficient of friction depending on the spatial variable is analysed. It is shown that a solution exists for any and is globally unique if is sufficiently small. The Lipschitz continuity of this unique solution as a function of as well as a function of the load vector f is obtained. Furthermore, local uniqueness of solutions for arbitrary > 0 is studied. The question of existence of locally Lipschitz-continuous...

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Currently displaying 21 – 30 of 30

Previous Page 2