The search session has expired. Please query the service again.
Let be a rotationally invariant (with respect to the proper orthogonal group) function defined on the set of all by matrices. Based on conditions for the rank 1 convexity of in terms of signed invariants of (to be defined below), an iterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given.
2D shallow water equations with depth-averaged k−ε
model is considered. A meshless method based on multiquadric radial basis functions is
described. This methods is based on the collocation formulation and does not require the
generation of a grid and any integral evaluation. The application of this method to a flow
in horizontal channel, taken as an experimental device, is presented. The results of
computations are compared with experimental data...
We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity...
We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to...
The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.
The aim of this paper is to find the largest lower semicontinuous minorant of the elastic-plastic energy of a body with fissures. The functional of energy considered is not coercive.
In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the norm of the deformation gradient and a nonlinear function of the determinant of the gradient. Non–interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some -norm of the gradient with is controlled...
Some properties of nonlinear partial differential equations are naturally associated with the geometry of sets in the space of matrices. In this paper we consider the model case when the compact set is contained in the hyperboloid , where , the set of symmetric matrices. The hyperboloid is generated by two families of rank-one lines and related to the hyperbolic Monge-Ampère equation . For some compact subsets containing a rank-one connection, we show the rigidity property of by imposing...
Currently displaying 1 –
11 of
11