Displaying 81 – 100 of 173

Showing per page

Mathematical models of suspension bridges

Gabriela Tajčová (1997)

Applications of Mathematics

In this work we try to explain various mathematical models describing the dynamical behaviour of suspension bridges such as the Tacoma Narrows bridge. Our attention is concentrated on the derivation of these models, an interpretation of particular parameters and on a discussion of their advantages and disadvantages. Our work should be a starting point for a qualitative study of dynamical structures of this type and that is why we have a closer look at the models, which have not been studied in literature...

Nonlinear models of suspension bridges: discussion of the results

Pavel Drábek, Gabriela Holubová, Aleš Matas, Petr Nečesal (2003)

Applications of Mathematics

In this paper we present several nonlinear models of suspension bridges; most of them have been introduced by Lazer and McKenna. We discuss some results which were obtained by the authors and other mathematicians for the boundary value problems and initial boundary value problems. Our intention is to point out the character of these results and to show which mathematical methods were used to prove them instead of giving precise proofs and statements.

On a nonlinear equation of the vibrating string

Angela Iannelli, Giovanni Prouse, Alessandro Veneziani (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A nonlinear model of the vibrating string is studied and global existence and uniqueness theorems for the solution of the Cauchy-Dirichlet problem are given. The model is then compared to the classical D'Alembert model and to a nonlinear model due to Kirchhoff.

On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface

Hans-Ullrich Wenk (1982)

Aplikace matematiky

The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...

Currently displaying 81 – 100 of 173