Displaying 21 – 40 of 95

Showing per page

A modal synthesis method for the elastoacoustic vibration problem

Alfredo Bermúdez, Luis Hervella-Nieto, Rodolfo Rodríguez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved, error...

A modal synthesis method for the elastoacoustic vibration problem

Alfredo Bermúdez, Luis Hervella-Nieto, Rodolfo Rodríguez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A modal synthesis method to solve the elastoacoustic vibration problem is analyzed. A two-dimensional coupled fluid-solid system is considered; the solid is described by displacement variables, whereas displacement potential is used for the fluid. A particular modal synthesis leading to a symmetric eigenvalue problem is introduced. Finite element discretizations with Lagrangian elements are considered for solving the uncoupled problems. Convergence for eigenvalues and eigenfunctions is proved,...

A nonlinear plate control without linearization

Kenan Yildirim, Ismail Kucuk (2017)

Open Mathematics

In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as...

A quasistatic contact problem with adhesion and friction for viscoelastic materials

Arezki Touzaline (2010)

Applicationes Mathematicae

We consider a mathematical model which describes the contact between a deformable body and a foundation. The contact is frictional and is modelled by a version of normal compliance condition and the associated Coulomb's law of dry friction in which adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behaviour is modelled by a nonlinear viscoelastic constitutive law. We derive a variational formulation...

A quasistatic unilateral and frictional contact problem with adhesion for elastic materials

Arezki Touzaline (2009)

Applicationes Mathematicae

We consider a quasistatic contact problem between a linear elastic body and a foundation. The contact is modelled with the Signorini condition and the associated non-local Coulomb friction law in which the adhesion of the contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation of the mechanical problem and prove existence of a weak solution if the friction coefficient is sufficiently small....

A spectral study of an infinite axisymmetric elastic layer

Lahcène Chorfi (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded self-adjoint operators A n , n , in a suitable Hilbert space. We show that the essential spectrum of A n is an interval of type [ γ , + [ and that, under certain conditions on the coefficients of the medium, the discrete spectrum is non empty.

A spectral study of an infinite axisymmetric elastic layer

Lahcène Chorfi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded self-adjoint operators An, n , in a suitable Hilbert space. We show that the essential spectrum of An is an interval of type [ γ , + [ and that, under certain conditions on the coefficients of the medium, the discrete spectrum is non empty.

Currently displaying 21 – 40 of 95