Previous Page 2

Displaying 21 – 37 of 37

Showing per page

Reachability of nonnegative equilibrium states for the semilinear vibrating string by varying its axial load and the gain of damping

Alexander Y. Khapalov (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We show that the set of nonnegative equilibrium-like states, namely, like ( y d , 0 ) of the semilinear vibrating string that can be reached from any non-zero initial state ( y 0 , y 1 ) H 0 1 ( 0 , 1 ) × L 2 ( 0 , 1 ) , by varying its axial load and the gain of damping, is dense in the “nonnegative” part of the subspace L 2 ( 0 , 1 ) × { 0 } of L 2 ( 0 , 1 ) × H - 1 ( 0 , 1 ) . Our main results deal with nonlinear terms which admit at most the linear growth at infinity in y and satisfy certain restriction on their total impact on (0,∞) with respect to the time-variable.

Simultaneous controllability in sharp time for two elastic strings

Sergei Avdonin, Marius Tucsnak (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Simultaneous controllability in sharp time for two elastic strings

Sergei Avdonin, Marius Tucsnak (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Small vertical vibrations of strings with moving ends.

Tania Nunes Rabello, María Cristina Campos Vieira, Cicero Lopes Frota, Luis Adauto Medeiros (2003)

Revista Matemática Complutense

In this work we investigate a mathematical model for small vertical vibrations of a stretched string when the ends vary with the time t and the cross sections of the string is variable and the density of the material is also variable, that is, p=p(x). It contains Kirchhoff model for fixed ends. We obtain solutions by Galerkin method and estimates in Sobolev spaces.

Time domain simulation of a piano. Part 1: model description

J. Chabassier, A. Chaigne, P. Joly (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this study is the time domain modeling of a piano. We aim at explaining the vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous, frequency dependent damped plate, using Reissner Mindlin equations. The vibroacoustics equations allow the soundboard to radiate into the surrounding air, in which we wish to compute the complete acoustical...

Verification of functional a posteriori error estimates for obstacle problem in 1D

Petr Harasim, Jan Valdman (2013)

Kybernetika

We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.

Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr Harasim, Jan Valdman (2014)

Kybernetika

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...

Weyl formula with optimal remainder estimate of some elastic networks and applications

Kaïs Ammari, Mouez Dimassi (2010)

Bulletin de la Société Mathématique de France

We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.

Currently displaying 21 – 37 of 37

Previous Page 2