Displaying 301 – 320 of 684

Showing per page

Mathematical modelling of rock bolt systems. II

Josef Malík (2000)

Applications of Mathematics

The main goal of the paper is to describe a reinforcement consisting of fully grouted bolts, which is applied to stabilizing underground openings and tunnels. After a variational formulation is given, the existence and uniqueness is proved. Some asymptotic results that make it possible to replace the real system with a continuous one more suitable for discretization are presented. Some other types of reinforcements and properties are studied.

Mathematical models of suspension bridges

Gabriela Tajčová (1997)

Applications of Mathematics

In this work we try to explain various mathematical models describing the dynamical behaviour of suspension bridges such as the Tacoma Narrows bridge. Our attention is concentrated on the derivation of these models, an interpretation of particular parameters and on a discussion of their advantages and disadvantages. Our work should be a starting point for a qualitative study of dynamical structures of this type and that is why we have a closer look at the models, which have not been studied in literature...

Mathematical treatment for thermoelastic plate with a curvilinear hole in S-plane

Alaa A. El-Bary (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The Cauchy integral method has been applied to derive exact and closed expressions for Goursat's functions for the first and second fundamental problems for an infinite thermoelastic plate weakened by a hole having arbitrary shape. The plate considered is conformally mapped to the area of the right half-plane. Many previous discussions of various authors can be considered as special cases of this work. The shape of the hole being an ellipse, a crescent, a triangle, or a cut having the shape of a...

Modeling of vibration for functionally graded beams

Gülsemay Yiğit, Ali Şahin, Mustafa Bayram (2016)

Open Mathematics

In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM), which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM).The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a...

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek (2009)

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Currently displaying 301 – 320 of 684