Displaying 481 – 500 of 684

Showing per page

Shape and topological sensitivity analysis in domains with cracks

Alexander Khludnev, Jan Sokołowski, Katarzyna Szulc (2010)

Applications of Mathematics

The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...

Shape optimization of elastic axisymmetric plate on an elastic foundation

Petr Salač (1995)

Applications of Mathematics

An elastic simply supported axisymmetric plate of given volume, fixed on an elastic foundation, is considered. The design variable is taken to be the thickness of the plate. The thickness and its partial derivatives of the first order are bounded. The load consists of a concentrated force acting in the centre of the plate, forces concentrated on the circle, an axisymmetric load and the weight of the plate. The cost functional is the norm in the weighted Sobolev space of the deflection curve of radius....

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising....

Shape optimization of piezoelectric sensors or actuators for the control of plates

Emmanuel Degryse, Stéphane Mottelet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising. ...

Sharp regularity of the second time derivative w_tt of solutions to Kirchhoff equations with clamped Boundary Conditions

Irena Lasiecka, Roberto Triggiani (2001)

International Journal of Applied Mathematics and Computer Science

We consider mixed problems for Kirchhoff elastic and thermoelastic systems, subject to boundary control in the clamped Boundary Conditions B.C. (“clamped control”). If w denotes elastic displacement and θ temperature, we establish optimal regularity of {w, w_t, w_tt} in the elastic case, and of {w, w_t, w_tt, θ} in the thermoelastic case. Our results complement those presented in (Lagnese and Lions, 1988), where sharp (optimal) trace regularity results are obtained for the corresponding boundary...

Simultaneous controllability in sharp time for two elastic strings

Sergei Avdonin, Marius Tucsnak (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Simultaneous controllability in sharp time for two elastic strings

Sergei Avdonin, Marius Tucsnak (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

Singular perturbations in optimal control problem with application to nonlinear structural analysis

Ján Lovíšek (1996)

Applications of Mathematics

This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result...

Small vertical vibrations of strings with moving ends.

Tania Nunes Rabello, María Cristina Campos Vieira, Cicero Lopes Frota, Luis Adauto Medeiros (2003)

Revista Matemática Complutense

In this work we investigate a mathematical model for small vertical vibrations of a stretched string when the ends vary with the time t and the cross sections of the string is variable and the density of the material is also variable, that is, p=p(x). It contains Kirchhoff model for fixed ends. We obtain solutions by Galerkin method and estimates in Sobolev spaces.

Solution of Fredholm integrodifferential equation for an infinite elastic plate

Alaa A. El-Bary (2004)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Many authors discussed the problem of an elastic infinite plate with a curvilinear hole, some of them considered this problem in z-plane and the others in the s-plane. They obtained an exact expression for Goursat's functions for the first and second fundamental problem. In this paper, we use the Cauchy integral method to obtain a solution to the first and second fundamental problem by using a new transformation. Some applications are investigated and also some special cases are discussed.

Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity

Qingliu Yao (2011)

Applications of Mathematics

We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions u ( 4 ) ( t ) = f t , u ( t ) , u ' ( t ) , u ' ' ( t ) , u ' ' ' ( t ) , a.e. t [ 0 , 1 ] , u ( 0 ) = a , u ' ( 0 ) = b , u ( 1 ) = c , u ' ' ( 1 ) = d , where the nonlinear term f ( t , u 0 , u 1 , u 2 , u 3 ) is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term f ( t , u 0 , u 1 , u 2 , u 3 ) on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.

Solvability of a dynamic rational contact with limited interpenetration for viscoelastic plates

Jiří Jarušek (2020)

Applications of Mathematics

Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical (``short memory'') form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero.

Currently displaying 481 – 500 of 684