Uniqueness of critical points for semi-linear Dirichlet problems in convex domains.
We consider variational problems of P. D. E. depending on a small parameter when the limit process implies vanishing of the higher order terms. The perturbation problem is said to be sensitive when the energy space of the limit problem is out of the distribution space, so that the limit problem is out of classical theory of P. D. E. We present here a review of the subject, including abstract convergence theorems and two very different model problems (the second one is presented for the first...
We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...
We consider mathematical models describing dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles. We model the contact with Signorini's complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented....
Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem.
We study the composite membrane problem in all dimensions. We prove that the minimizing solutions exhibit a weak uniqueness property which under certain conditions can be turned into a full uniqueness result. Next we study the partial regularity of the solutions to the Euler–Lagrange equation associated to the composite problem and also the regularity of the free boundary for solutions to the Euler–Lagrange equations.
Unilateral deflection problem of a clamped plate above a rigid inner obstacle is considered. The variable thickness of the plate is to be optimized to reach minimal weight under some constraints for maximal stresses. Since the constraints are expressed in terms of the bending moments only, Herrmann-Hellan finite element scheme is employed. The existence of an optimal thickness is proved and some convergence analysis for approximate penalized optimal design problem is presented.
We consider a network of vibrating elastic strings and Euler-Bernoulli beams. Using a generalized Poisson formula and some Tauberian theorem, we give a Weyl formula with optimal remainder estimate. As a consequence we prove some observability and stabilization results.