Displaying 41 – 60 of 88

Showing per page

Modelling of singularities in elastoplastic materials with fatigue

Pavel Krejčí (1994)

Applications of Mathematics

The hypothesis that, on the macroscopic level, the accumulated fatigue of an elastoplastic material with kinematic hardening can be identified from the mathematical point of view with the dissipated energy, is used for the construction of a new constitutive elastoplastic fatigue model. Its analytical investigation characterizes conditions for the formation of singularities in a finite time. The corresponding constitutive law is then coupled with the dynamical equation of motion of a one-dimensional...

Molecular modelling of stresses and deformations in nanostructured materials

Gwidon Szefer (2004)

International Journal of Applied Mathematics and Computer Science

A molecular dynamics approach to the deformation and stress analysis in structured materials is presented. A new deformation measure for a lumped mass system of points is proposed. In full consistency with the continuum mechanical description, three kinds of stress tensors for the discrete system of atoms are defined. A computer simulation for a set of 10^5 atoms forming a sheet undergoing tension (Case 1) and contraction (Case 2) is given. Characteristic microstress distributions evoked by a crack...

Non-local damage modelling of quasi-brittle composites

Jiří Vala, Vladislav Kozák (2021)

Applications of Mathematics

Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying...

Note critiche sui carichi di collasso dei continui bidimensionali isotropi

Giuseppe Creazza, Arturo Natali (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Nei continui bidimensionali isotropi in fase fessurata si dimostra, nella sola ipotesi che le linee di rottura rappresentino univocamente il meccanismo di collasso, la impossibilità di ottenere un moltiplicatore ottimale del carico. La configurazione reale può essere definita considerando anche la capacità deformativa del continuo in esame.

Numerical approach to a rate-independent model of decohesion in laminated composites

Zeman, Jan, Gruber, Pavel (2010)

Programs and Algorithms of Numerical Mathematics

In this paper, we present a numerical approach to evolution of decohesion in laminated composites based on incremental variational problems. An energy-based framework is adopted, in which we characterize the system by the stored energy and dissipation functionals quantifying reversible and irreversible processes, respectively. The time-discrete evolution then follows from a solution of incremental minimization problems, which are converted to a fully discrete form by employing the conforming finite...

Numerical approaches to rate-independent processes and applications in inelasticity

Alexander Mielke, Tomáš Roubíček (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

A conceptual numerical strategy for rate-independent processes in the energetic formulation is proposed and its convergence is proved under various rather mild data qualifications. The novelty is that we obtain convergence of subsequences of space-time discretizations even in case where the limit problem does not have a unique solution and we need no additional assumptions on higher regularity of the limit solution. The variety of general perspectives thus obtained is illustrated on several...

On a 3D-Hypersingular Equation of a Problem for a Crack

Samko, Stefan (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 45DB05, 45E05, 78A45We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation.

On the change of energy caused by crack propagation in 3-dimensional anisotropic solids

Martin Steigemann, Maria Specovius-Neugebauer (2014)

Mathematica Bohemica

Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a...

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.

Quasi-static evolution for fatigue debonding

Alessandro Ferriero (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of the debonding of thin layers, coming from a time discretized version recently proposed by Jaubert and Marigo [C. R. Mecanique333 (2005) 550–556]. Under very general assumptions on the surface energy density and on the applied displacement, we discuss the well-posedness of our problem and we give the main...

Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics

Matteo Negri (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We characterize quasi-static rate-independent evolutions, by means of their graph parametrization, in terms of a couple of equations: the first gives stationarity while the second provides the energy balance. An abstract existence result is given for functionals ℱ of class C1 in reflexive separable Banach spaces. We provide a couple of constructive proofs of existence which share common features with the theory of minimizing movements for gradient flows. Moreover, considering a sequence of functionals...

Currently displaying 41 – 60 of 88